The applet below illustrates a geometric proof of Weitzenböck's Inequality.
For any triangle ABC with sides $a,$ $b,$ $c,$ and the area $S,$
$a^2 + b^2 + c^2 \ge 4\sqrt{3}S.$
This wonderful geometric proof is due to C. Alsina and R. B. Nelsen.
Algebra, Geometry, International Mathematical Olympiads, Math contests, Puzzles, Brainteasers, Number Theory, Combinatorics, Logic, Paradox
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου