Το ποσοστό πληρότητας ενός ξενοδοχείου κατά τους τρεις μήνες αιχμής του καλοκαιριού είναι άνω του 78%, τους δε υπόλοιπους μήνες του έτους η πληρότητα ανέρχεται σε 42%. Ποιο είναι το μέσο ετήσιο ποσοστό πληρότητας;
Και να κάνω και 'γώ μία ερώτηση-παρατήρηση στη λύση του Νίκου, Νίκο φαντάζομαι να μην με παρεξηγήσεις (προφανώς λόγω ταχύτητας και πανευκολίας του θέματος), αφού "κατά τους τρεις μήνες αιχμής του καλοκαιριού είναι ΑΝΩ του 78%" τότε όλο το χρόνο δεν θα είναι >51%;
Ναι ναι , το σκέφτηκα να το ξαναγράψω αλλά βαρέθηκα.
Να συμπληρώσω ότι η περίπτωση διδάσκεται στα μαθηματικά γενικής παιδείας στην Γ λυκείου ως σταθμικός μέσος. Εκεί μιλάμε για συντελεστές βαρύτητας κ.λ.π.
Kάρλο, μπορεί να είναι από $51+\frac{1}{n},\ n=1,2,3,.... $% έως$\frac{3 \times 1+9 \times0.42 }{12}=56.5$%, αλλά πόσο είναι ακριβώς δεν μπορεί να το ξέρουμε, εξαρτάται από την πληρότητα τριμήνου $>78$%, πόσο πάνω όμως δεν το ξέρουμε!
Το μέσο ετήσιο ποσοστό πληρότητας ανέρχεται σε 53,33%. Για τους 12 μήνες η πληρότητα ανέρχεται σε: 78%+42%=120% Για τους 3 μήνες η πληρότητα ανέρχεται σε: 120:3=40% ανά μήνα. Για τους 9 μήνες η πληρότητα ανέρχεται σε: 120:9=13,33% Άρα το μέσο ετήσιο ποσοστό πληρότητας ανέρχεται σε: 40%+13,33%=53,33%
Ένα αντιπαράδειγμα ότι δεν υπολογίζεται έτσι. Ένα($1$) μήνα έχει πληρότητα $95$% , $3$ μήνες έχει πληρότητα $90$% και $8$ μήνες $55$% Άρα όπως γράφεις πληρότητα για $12$ μήνες $95+90+55=240$%. Για τον ένα μήνα η πληρότητα ανέρχεται σε: $240:1=240$% Για τους $3$ μήνες η πληρότητα ανέρχεται σε: $240:3=80$% Για τους $8$ μήνες η πληρότητα ανέρχεται σε: $240:8=30$% Άρα το μέσο ποσοστό πληρότητας $240+80+30=350$% Πολύ δεν είναι;
$\boxed{\dfrac{{3\dfrac{{78}}{{100}} + 9\dfrac{{42}}{{100}}}}{{12}} = \dfrac{{51}}{{100}} = 51\% }$
ΑπάντησηΔιαγραφήΚαλησπέρα Κάρλο και Νίκο!
ΑπάντησηΔιαγραφήΞενοδοχείο "Ελέας" στο Αργάσι Ζακύνθου! :-)
Και να κάνω και 'γώ μία ερώτηση-παρατήρηση στη λύση του Νίκου, Νίκο φαντάζομαι να μην με παρεξηγήσεις (προφανώς λόγω ταχύτητας και πανευκολίας του θέματος), αφού
"κατά τους τρεις μήνες αιχμής του καλοκαιριού είναι ΑΝΩ του 78%" τότε όλο το χρόνο δεν θα είναι >51%;
Ναι ναι , το σκέφτηκα να το ξαναγράψω αλλά βαρέθηκα.
ΑπάντησηΔιαγραφήΝα συμπληρώσω ότι η περίπτωση διδάσκεται στα μαθηματικά γενικής παιδείας στην Γ λυκείου ως σταθμικός μέσος.
Εκεί μιλάμε για συντελεστές βαρύτητας κ.λ.π.
Καλησπέρα και στους δύο. Ναι, είναι άνω του 51%. Για την ακρίβεια 53,33%
ΑπάντησηΔιαγραφήKάρλο, μπορεί να είναι από $51+\frac{1}{n},\ n=1,2,3,.... $% έως$\frac{3 \times 1+9 \times0.42 }{12}=56.5$%, αλλά πόσο είναι ακριβώς δεν μπορεί να το ξέρουμε, εξαρτάται από την πληρότητα τριμήνου $>78$%, πόσο πάνω όμως δεν το ξέρουμε!
ΑπάντησηΔιαγραφήΤο μέσο ετήσιο ποσοστό πληρότητας ανέρχεται σε 53,33%.
ΑπάντησηΔιαγραφήΓια τους 12 μήνες η πληρότητα ανέρχεται σε:
78%+42%=120%
Για τους 3 μήνες η πληρότητα ανέρχεται σε:
120:3=40% ανά μήνα.
Για τους 9 μήνες η πληρότητα ανέρχεται σε:
120:9=13,33%
Άρα το μέσο ετήσιο ποσοστό πληρότητας ανέρχεται σε:
40%+13,33%=53,33%
Ένα αντιπαράδειγμα ότι δεν υπολογίζεται έτσι.
ΔιαγραφήΈνα($1$) μήνα έχει πληρότητα $95$% , $3$ μήνες έχει πληρότητα $90$% και $8$ μήνες $55$%
Άρα όπως γράφεις πληρότητα για $12$ μήνες $95+90+55=240$%.
Για τον ένα μήνα η πληρότητα ανέρχεται σε: $240:1=240$%
Για τους $3$ μήνες η πληρότητα ανέρχεται σε: $240:3=80$%
Για τους $8$ μήνες η πληρότητα ανέρχεται σε: $240:8=30$%
Άρα το μέσο ποσοστό πληρότητας $240+80+30=350$%
Πολύ δεν είναι;
Ναι, έχεις δίκιο. Λάθος είιναι η λύση μου.
ΔιαγραφήΝαι, Ευθύμη, με τη κρίση που υπάρχει όμως, μάλλον το ποσοστό που αναφέρω είναι εύλογο.
ΑπάντησηΔιαγραφήΕπειδή η πληρότητα για τρεις μήνες είναι πάνω από $78\% $ , η μέση πληρότητα θα κυμαίνεται:
ΑπάντησηΔιαγραφήα) πάνω από $\boxed{\dfrac{{3\dfrac{{78}}{{100}} + 9\dfrac{{42}}{{100}}}}{{12}} = 51\% }$ και
β) το πολύ $\boxed{\dfrac{{3 + 9\dfrac{{42}}{{100}}}}{{12}} = 56,5\% }$
Ποσοστά που συμφωνούν και με το σκεπτικό του Ευθύμη.