Challenging Recreational Mathematics
Your Daily Experience of Math Adventures
Παρασκευή 1 Φεβρουαρίου 2013
▪ Ανισότητες - 192η
Έστω $x,y,z$ θετικοί πραγματικοί αριθμοί, τέτοιοι ώστε $x\geq y\geq z$. Να αποδειχθεί ότι
$\frac{x^2y}{z}+\frac{y^2z}{x}+\frac{z^2x}{y}\geq x^2+y^2+z^2$
.
IMO Longlists 1990
Διασκεδαστικά Μαθηματ
ικά
www.eisatopon.blogspot.com
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου
Νεότερη ανάρτηση
Παλαιότερη Ανάρτηση
Αρχική σελίδα
Εγγραφή σε:
Σχόλια ανάρτησης (Atom)
Total views
Αναζήτηση
Search
190 Αποδείξεις του Πυθαγορείου θεωρήματος
Recent Comments
Επισκεφτείτε το Eisatopon στο Twitter X
Επισκεφτείτε το Eisatopon στο Pinterest
Desmos Activities
COPILOT AI
Ultimate AI Math Solver
Photomath
The Ultimate Math Help App
Wikipedia - Mathematics
Google Gemini
OpenAI - Chat GPT
DeepL Translator
LATEX
Ελληνική Μαθηματική Εταιρεία
Κυπριακή Μαθηματική Εταιρεία
Canadian Mathematical Society (CMS)
The William Lowell Putnam Mathematics Competition (Archive 1985 - 2021)
Art of Problem Solving ONLINE
Leonardo Fibonacci
Kurt Friedrich Gödel
Ευκλείδης
Αρχιμήδης
Leonard Euler
Georg Cantor
Pierre-Simon Laplace
René Descartes
Joseph-Louis Lagrange
Πιερ ντε Φερμά
Gottfried Wilhelm Leibniz
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου