Τρίτη 3 Μαΐου 2011

▪ Ο Θεός υπάρχει

Η απόδειξη της ύπαρξης του Θεού από τον Kurt Godel σε ένα φύλλο χαρτί.
Απόδειξη
Axiom 1. (Dichotomy) A property is positive if and only if its negation is negative.
Axiom 2. (Closure) A property is positive if it necessarily contains a positive property.
Theorem 1. A positive property is logically consistent (i.e., possibly it has some instance.)
Definition. Something is God-like if and only if it possesses all positive properties.
Axiom 3. Being God-like is a positive property.
Axiom 4. Being a positive property is (logical, hence) necessary.
Definition. A property P is the essence of x if and only if x has P and P is necessarily minimal.
Theorem 2. If x is God-like, then being God-like is the essence of x.
Definition. NE(x) means x necessarily exists if it has an essential property.
Axiom 5. Being NE is God-like.

Theorem 3. Necessarily there is some x such that x is God-like. (qed)
Η απόδειξη με σύμβολα:

\begin{array}{rl}

\text{Ax. 1.} & \left\{P(\varphi) \wedge \Box \; \forall x[\varphi(x) \to \psi(x)]\right\} \to P(\psi) \\

\text{Ax. 2.} & P(\neg \varphi) \leftrightarrow \neg P(\varphi) \\

\text{Th. 1.} & P(\varphi) \to \Diamond \; \exists x[\varphi(x)] \\

\text{Df. 1.} & G(x) \iff \forall \varphi [P(\varphi) \to \varphi(x)] \\

\text{Ax. 3.} & P(G) \\

\text{Th. 2.} & \Diamond \; \exists x \; G(x) \\

\text{Df. 2.} & \varphi \text{ ess } x \iff \varphi(x) \wedge \forall \psi \left\{\psi(x) \to \Box \; \forall x[\varphi(x) \to \psi(x)]\right\} \\

\text{Ax. 4.} & P(\varphi) \to \Box \; P(\varphi) \\

\text{Th. 3.} & G(x) \to G \text{ ess } x \\
  
\text{Df. 3.} & E(x) \iff \forall \varphi[\varphi \text{ ess } x \to \Box \; \exists x \; \varphi(x)] \\
   
\text{Ax. 5.} & P(E) \\
   
\text{Th. 4.} & \Box \; \exists x \; G(x)
  
\end{array}

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου