Click to Translate Whole Page to Read and Solve

Πέμπτη 16 Ιανουαρίου 2025

An integral of Romanian Mathematical Magazine

Find a closed form: Ω=1eπ01arcsin(xa)arccos(xa)xdxda Proposed by Ankush Kumar Parcha - India 
Solution by Ose Favour - Nigeria Ω=01arccos(x)arcsin(x)xdx=01arcsin(x)x(π2arcsin(x))dx= =π201arcsin(x)xdx01(arcsin(x))2xdx =π20π2ycot(y)dy0π2y2cot(y)dy=π24ln(2)+20π2yln(sin(y))dy= =π24ln(2)π28ln(2)k=11k0π2ycos(2ky)dy=78ζ(3).