Εικασία του Goldbach
Κάθε άρτιος $≥ 4$ είναι άθροισμα δύο πρώτων. Για παράδειγμα:
$4 = 2+2, 6 = 3+3$,
$8 = 3+ 5, 10 = 3+7 = 5+5$,
$12 = 5+7, 14 = 3+11 = 7+7$.
Η εικασία του Goldbach θεωρείται εξαιρετικά δύσκολο πρόβλημα. Μέχρι στιγμής έχει ελεγχθεί και ισχύει για όλους τους άρτιους $≤ 4 · 1018$. Ο Goldbach διατύπωσε και την επόμενη εικασία.
Ασθενής εικασία του Goldbach
Κάθε περιττός $≥ 7$ είναι άθροισμα τριών πρώτων. Είναι σχεδόν προφανές ότι, αν είναι αληθής η εικασία του Goldbach, τότε είναι αληθής και η ασθενής εικασία του Goldbach. (Διότι, αν ο $n$ είναι περιττός, τότε ο $n− 2$ είναι άρτιος και ο $2$ είναι πρώτος.)
Ο Vinogradov το $1937$ απέδειξε το:
Θεώρημα
Υπάρχει $n_0$ ώστε κάθε περιττός $≥ n_0$ είναι άθροισμα τριών πρώτων.
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου