Η τετραγωνική ρίζα του $5$ εμφανίζεται σε διάφορες ταυτότητες Ramanujan, οι οποίες εμπλέκονται με συνεχή κλάσματα.
Για παράδειγμα:
${\displaystyle {\cfrac {1}{1+{\cfrac {e^{-2\pi }}{1+{\cfrac {e^{-4\pi }}{1+{\cfrac {e^{-6\pi }}{1+\ddots }}}}}}}}=\left({\sqrt {\frac {5+{\sqrt {5}}}{2}}}-{\frac {{\sqrt {5}}+1}{2}}\right)e^{2\pi /5}=e^{2\pi /5}\left({\sqrt {\varphi {\sqrt {5}}}}-\varphi \right).}$
${\displaystyle {\cfrac {1}{1+{\cfrac {e^{-2\pi {\sqrt {5}}}}{1+{\cfrac {e^{-4\pi {\sqrt {5}}}}{1+{\cfrac {e^{-6\pi {\sqrt {5}}}}{1+\ddots }}}}}}}}=\left({{\sqrt {5}} \over 1+\left[5^{3/4}(\varphi -1)^{5/2}-1\right]^{1/5}}-\varphi \right)e^{2\pi /{\sqrt {5}}}.} $
${\displaystyle 4\int _{0}^{\infty }{\frac {xe^{-x{\sqrt {5}}}}{\cosh x}}\,dx={\cfrac {1}{1+{\cfrac {1^{2}}{1+{\cfrac {1^{2}}{1+{\cfrac {2^{2}}{1+{\cfrac {2^{2}}{1+{\cfrac {3^{2}}{1+{\cfrac {3^{2}}{1+\ddots }}}}}}}}}}}}}}.}$
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου