Ο Ιάμβλιχος στο έργο του με τίτλο Αριθμητική εισαγωγή υποστηρίζει ότι ο Θυμαρίδας (400 - 350 π.Χ.) εργάστηκε με τις ταυτόχρονες εξισώσεις. Συγκεκριμένα, δημιούργησε τον διάσημο κανόνα γνωστό ως "το άνθος του Θυμαρίδα" ή "το λουλούδι του Θυμαρίδα" το οποίο υποστηρίζει ότι:
Αν το άθροισμα n μεταβλητών που δίνεται και επίσης το άθροισμα του κάθε ζεύγους που περιέχουν μία συγκεκριμένη μεταβλητή, τότε αυτή η μεταβλητή ισούται με το $\dfrac{1}{n-2}$ της διαφοράς μεταξύ των αθροισμάτων αυτών των ζευγών και του αρχικού δοσμένου αθροίσματος ή χρησιμοποιώντας μία σύγχρονη αντίληψη, η λύση του παρακάτω συστήματος $n$ γραμμικών εξισώσεων σε $n$ αγνώστους,
$x + x_1 + x_2 + ... + x_{n-1} = s$
$x + x_1 = m_1$
$x + x_2 = m_2$
.
.
.
$x + x_{n-1} = m_{n-1}$
είναι
${\displaystyle x={\cfrac {(m_{1}+m_{2}+...+m_{n-1})-s}{n-2}}={\cfrac {(\sum _{i=1}^{n-1}m_{i})-s}{n-2}}}$
Ο Ιάμβλιχος συνεχίζει για να περιγράψει το πως ορισμένα συστήματα γραμμικών εξισώσεων που δεν έχουν αυτή τη μορφή μπορούν αναχθούν σε αυτή τη μορφή.
Από wikipedia.
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου