Τετάρτη 14 Φεβρουαρίου 2024

A simple way to show a formula in area

Area in parametric form
Let $C$ be a parametric curve given by :
If the point $P(x,y)$, as t varies from $a$ to $b$, encircles a loop, the area is:

 This formula is rather difficult to understand, here is a simple way to show the result.

 Referring to the diagram, if T denotes the signed area of the triangle in yellow, then the   increment of T,

                dT = dS + dA

 So that,

                

 Since  

                         ,      

  After some short evaluation we have,

                

  The result follows by taking integration.

 

        An example

 

        An ellipse is given by the curve :

                

        The area enclosed by the ellipse is therefore :

                

        Wow! We get our result easily.

Πηγή: qc.edu

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου