Τετάρτη 26 Ιουλίου 2023

Ελάχιστη απόσταση σημείου από καμπύλη

Στο παρακάτω σχήμα η καμπύλη $C$ είναι η γραφική παράσταση μιας συνάρτησης $f$ που είναι συνεχής στο $[α, β]$ και το $M_0(x_0,y_0)$ είναι ένα σημείο του επιπέδου,
i) Να βρείτε τον τύπο της απόστασης $d(x) = (M_0M)$ του σημείου $M_0(x_0,y_0)$ από το σημείο $M(x,f(x))$ της $C_f$ για κάθε $x ϵ [α, β]$. 
ii) Να αποδείξετε ότι η συνάρτηση $d$ είναι συνεχής στο $[α,β]$ και στη συνέχεια ότι υπάρχει ένα, τουλάχιστον, σημείο της $C_f$ που απέχει από το $M_0$ λιγότερο από ότι απέχουν τα υπόλοιπα σημεία της και ένα, τουλάχιστον, σημείο της $C_f$ που απέχει από το $M_0$ περισσότερο από ότι απέχουν τα υπόλοιπα σημεία της.
Από το σχολικό βιβλίο των Μαθηματικών Προσατολισμού της Γ Λυκείου.

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου