Πέμπτη 19 Μαΐου 2022

Αόριστο και δύσκολο

Να υπολογιστεί το ολοκλήρωμα
$$\int_0^1 (x+\sqrt[3]{x^3-1})^{2018}dx$$

2 σχόλια:

  1. Θεωρούμε το ολοκλήρωμα :

    I=int(δ-->1)((x + cuberoot(x^3 - 1))^2018), όπου 0δ)((-u - cuberoot(u^3 - 1))^2018) ((-u^2)/(cuberoot(u^3 - 1)^2)) . Αν θέσουμε φ=u + cuberoot(u^3-1), τότε Ι=int(φ(δ)-->1)(φ^2018 ) - Ι , άρα 2Ι=(1-φ(δ)^2019)/2019 και όταν δ-->0 2Ι=2/2019, Ι=1/2019
    η φ=u-(1-u^3)^1/3 u στο (0,1) με 1-u^3 >0

    ΑπάντησηΔιαγραφή
  2. λείπει κείμενο: η αρχική αντικατάσταση είναι : u^3=1-x^3 με dx=((-u^2)/(cuberoot((1-u^3)^2))

    ΑπάντησηΔιαγραφή