Θεώρημα IΙ
Αν από ένα σημείο εκτός ευθείας φέρουμε το κάθετο και δύο πλάγια ευθύγραμμα τμήματα τότε:(i) Το κάθετο τμήμα είναι μικρότερο από κάθε πλάγιο.
(ii) Αν δύο πλάγια τμήματα είναι άνισα, τότε και οι αποστάσεις των ιχνών τους από το ίχνος της καθέτου είναι ομοιοτρόπως άνισες και αντίστροφα.
Απόδειξη
(i) Στο ορθογώνιο τρίγωνο ΑΚΒ, η γωνία Κ είναι η μεγαλύτερη ως ορθή. Επομένως η πλευρά ΑΒ είναι η μεγαλύτερη πλευρά του τριγώνου και, άρα, ΑΒ > ΑΚ.
(ii) Έστω ευθεία ε και σημείο Α εκτός αυτής. Θεωρούμε την κάθετο ΑΚ στην ε και δύο πλάγια τμήματα ΑΒ, ΑΓ, όπου Β, Γ σημεία της ε.
Χωρίς βλάβη της γενικότητας, μπορούμε να υποθέσουμε ότι και τα δύο ίχνη Β, Γ των πλάγιων τμημάτων ανήκουν στην ίδια ημιευθεία που ορίζει το σημείο Κ.
Ας υποθέσουμε ότι ΚΓ > ΚΒ. Θα αποδείξουμε ότι ΑΓ > ΑΒ. Αφού το Β είναι μεταξύ των Κ, Γ, η ΑBΓ είναι εξωτερική του ορθογώνιου τριγώνου ΚΑΒ, επομένως
ΑBΓ > Κ = 1∟,δηλαδή η ΑΒΓ είναι αμβλεία. Στο τρίγωνο ΑΒΓ η πλευρά ΑΓ βρίσκεται απέναντι από την ΑΒΓ, συνεπώς είναι η μεγαλύτερη πλευρά του τριγώνου, δηλαδή ΑΓ>ΑΒ.
Αντίστροφα. Ας υποθέσουμε ότι ΑΓ > ΑΒ. Αν ήταν ΚΓ = ΚΒ, τότε θα είχαμε ΑΓ = ΑΒ, που είναι άτοπο.
(ii) Έστω ευθεία ε και σημείο Α εκτός αυτής. Θεωρούμε την κάθετο ΑΚ στην ε και δύο πλάγια τμήματα ΑΒ, ΑΓ, όπου Β, Γ σημεία της ε.
Χωρίς βλάβη της γενικότητας, μπορούμε να υποθέσουμε ότι και τα δύο ίχνη Β, Γ των πλάγιων τμημάτων ανήκουν στην ίδια ημιευθεία που ορίζει το σημείο Κ.
Ας υποθέσουμε ότι ΚΓ > ΚΒ. Θα αποδείξουμε ότι ΑΓ > ΑΒ. Αφού το Β είναι μεταξύ των Κ, Γ, η ΑBΓ είναι εξωτερική του ορθογώνιου τριγώνου ΚΑΒ, επομένως
ΑBΓ > Κ = 1∟,δηλαδή η ΑΒΓ είναι αμβλεία. Στο τρίγωνο ΑΒΓ η πλευρά ΑΓ βρίσκεται απέναντι από την ΑΒΓ, συνεπώς είναι η μεγαλύτερη πλευρά του τριγώνου, δηλαδή ΑΓ>ΑΒ.
Αντίστροφα. Ας υποθέσουμε ότι ΑΓ > ΑΒ. Αν ήταν ΚΓ = ΚΒ, τότε θα είχαμε ΑΓ = ΑΒ, που είναι άτοπο.
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου