Click to Translate Whole Page to Read and Solve

Δευτέρα 10 Δεκεμβρίου 2012

▪ Γεωμετρία - Άσκηση 394

Έστω παραλληλόγραμμο ABCD και δύο ίσοι κύκλοι C1 και C2 ακτίνας R, τέτοιοι ώστε ο κύκλος C1 να διέρχεται από τις κορυφές A και B και ο κύκλος C2 από τις κορυφές B και C. Αν E είναι το δεύτερο σημείο τομής των δύο κύκλων (το σημείο Ε δεν ταυτίζεται με κορυφή του παραλληλογράμμου), να αποδείξετε ότι ο κύκλος που διέρχεται από τα σημεία A,D και E έχει ακτίνα R.
Nordic Mathematical Olympiad 1987
 Διασκεδαστικά Μαθηματικά    www.eisatopon.blogspot.com