Κυριακή 9 Σεπτεμβρίου 2012

▪ Γεωμετρία: Άσκηση 350

Έστω $O$ το κέντρο ενός κύκλου $k$ και $A, B, C, D, E, F$ σημεία επί του κύκλου $k$ τέτοια, ώστε τα τρίγωνα $OAB, OCD, OEF$ να είναι ισόπλευρα. Αν $L, M, N$ τα μέσα των $BC, DE, FA$, αντίστοιχα, να αποδειχθεί ότι το τρίγωνο $LMN$ είναι ισόπλευρο.
Berkeley Math Circle 2000

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου