Mια προοπτική για τα μαθηματικά, το μοτίβο και το αφηρημένο.
Mathematica code:Id[x_, y_] := {x, y}
f[x_, y_] := {Log[Sqrt[x^2 + y^2]], ArcTan[x, y]}
ListAnimate[
Table[
Show[
ImageTransformation[
Graphics[
Rotate[
Table[
{If[ Mod[j, 4] == 0, Blue,
If[ Mod[j, 4] == 1, Green,
If[ Mod[j, 4] == 2, Pink,
If[ Mod[j, 4] == 3, Yellow]]]],
Thickness[.01],
Line[{{j + t, 40 + t}, {j + t, -20 + t}}]},
{j, -12, 37, 1}],
1.03],
PlotRange -> {{-.5, 27.5}, {-.5, 27.5}},
ImageSize -> 500, Background -> Black],
f[#[[1]], #[[2]]] &, DataRange -> {{-Pi, Pi}, {-Pi, Pi}}],
ImageTransformation[
Graphics[
Table[
{Black,
Disk[{13.75, 13.75}, 20, {k*Pi/19, (k + 1) Pi/19 - .3*Pi/19}]},
{k, 0, 37, 1}],
PlotRange -> {{-.5, 27.5}, {-.5, 27.5}},
ImageSize -> 500, Background -> None],
Id[#[[1]], #[[2]]] &, DataRange -> {{-Pi, Pi}, {-Pi, Pi}}]],
{t, 0, 2.9, .1}]]
f[x_, y_] := {Log[Sqrt[x^2 + y^2]], ArcTan[x, y]}
ListAnimate[
Table[
Show[
ImageTransformation[
Graphics[
Rotate[
Table[
{If[ Mod[j, 4] == 0, Blue,
If[ Mod[j, 4] == 1, Green,
If[ Mod[j, 4] == 2, Pink,
If[ Mod[j, 4] == 3, Yellow]]]],
Thickness[.01],
Line[{{j + t, 40 + t}, {j + t, -20 + t}}]},
{j, -12, 37, 1}],
1.03],
PlotRange -> {{-.5, 27.5}, {-.5, 27.5}},
ImageSize -> 500, Background -> Black],
f[#[[1]], #[[2]]] &, DataRange -> {{-Pi, Pi}, {-Pi, Pi}}],
ImageTransformation[
Graphics[
Table[
{Black,
Disk[{13.75, 13.75}, 20, {k*Pi/19, (k + 1) Pi/19 - .3*Pi/19}]},
{k, 0, 37, 1}],
PlotRange -> {{-.5, 27.5}, {-.5, 27.5}},
ImageSize -> 500, Background -> None],
Id[#[[1]], #[[2]]] &, DataRange -> {{-Pi, Pi}, {-Pi, Pi}}]],
{t, 0, 2.9, .1}]]
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου