Translate Whole Page

Κυριακή 17 Ιουλίου 2011

▪ Στοιχεία Ευκλείδη - Βιβλίο α', πρόβλημα δ΄

Β ι β λ ί ο ν αʹ
Π ρ ο β λ ή μ α τ α κ α ὶ
Θ ε ω ρ ή μ α τ α

__________________________________________________
     δʹ Π ρ ό β λ η μ α
Ἐὰν δύο τρίγωνα τὰς δύο πλευρὰς [ταῖς] δυσὶ πλευραῖς ἴσας ἔχηι ἑκατέραν ἑκατέραι καὶ τὴν γωνίαν τῆι γωνίαι ἴσην ἔχηι τὴν ὑπὸ τῶν ἴσων εὐθειῶν περιεχομένην, καὶ τὴν βάσιν τῆι βάσει ἴσην ἕξει, καὶ τὸ τρίγωνον τῶι τριγώνωι ἴσον ἔσται, καὶ αἱ λοιπαὶ γωνίαι ταῖς λοιπαῖς γωνίαις ἴσαι ἔσονται ἑκατέρα ἑκατέραι, ὑφ' ἃς αἱ ἴσαι πλευραὶ ὑποτείνουσιν. 
Ἔστω δύο τρίγωνα τὰ ΑΒΓ, ΔΕΖ τὰς δύο πλευρὰς τὰς ΑΒ, ΑΓ ταῖς δυσὶ πλευραῖς ταῖς ΔΕ, ΔΖ ἴσας ἔχοντα ἑκατέραν ἑκατέραι τὴν μὲν ΑΒ τῆι ΔΕ τὴν δὲ ΑΓ τῆι ΔΖ καὶ γωνίαν τὴν ὑπὸ ΒΑΓ γωνίαι τῆι ὑπὸ ΕΔΖ ἴσην. λέγω, ὅτι καὶ βάσις ἡ ΒΓ βάσει τῆι ΕΖ ἴση ἐστίν, καὶ τὸ ΑΒΓ τρίγωνον τῶι ΔΕΖ τριγώνωι ἴσον ἔσται, καὶ αἱ λοιπαὶ γωνίαι ταῖς λοιπαῖς γωνίαις ἴσαι ἔσονται ἑκατέρα ἑκατέραι, ὑφ' ἃς αἱ ἴσαι πλευραὶ ὑποτείνουσιν, ἡ μὲν ὑπὸ ΑΒΓ τῆι ὑπὸ ΔΕΖ, ἡ δὲ ὑπὸ ΑΓΒ τῆι ὑπὸ ΔΖΕ. 
Ἐφαρμοζομένου γὰρ τοῦ ΑΒΓ τριγώνου ἐπὶ τὸ ΔΕΖ τρίγωνον καὶ τιθεμένου τοῦ μὲν Α σημείου ἐπὶ τὸ Δ σημεῖον τῆς δὲ ΑΒ εὐθείας ἐπὶ τὴν ΔΕ, ἐφαρμόσει καὶ τὸ Β σημεῖον ἐπὶ τὸ Ε διὰ τὸ ἴσην εἶναι τὴν ΑΒ τῆι ΔΕ· ἐφαρμοσάσης δὴ τῆς ΑΒ ἐπὶ τὴν ΔΕ ἐφαρμόσει καὶ ἡ ΑΓ εὐθεῖα ἐπὶ τὴν ΔΖ διὰ τὸ ἴσην εἶναι τὴν ὑπὸ ΒΑΓ γωνίαν τῆι ὑπὸ ΕΔΖ· ὥστε καὶ τὸ Γ σημεῖον ἐπὶ τὸ Ζ σημεῖον ἐφαρμόσει διὰ τὸ ἴσην πάλιν εἶναι τὴν ΑΓ τῆι ΔΖ. ἀλλὰ μὴν καὶ τὸ Β ἐπὶ τὸ Ε ἐφηρμόκει· ὥστε βάσις ἡ ΒΓ ἐπὶ βάσιν τὴν ΕΖ ἐφαρμόσει. εἰ γὰρ τοῦ μὲν Β ἐπὶ τὸ Ε ἐφαρμόσαντος τοῦ δὲ Γ ἐπὶ τὸ Ζ ἡ ΒΓ βάσις ἐπὶ τὴν ΕΖ οὐκ ἐφαρμόσει, δύο εὐθεῖαι χωρίον περιέξουσιν· ὅπερ ἐστὶν ἀδύνατον. ἐφαρμόσει ἄρα ἡ ΒΓ βάσις ἐπὶ τὴν ΕΖ καὶ ἴση αὐτῆι ἔσται· ὥστε καὶ ὅλον τὸ ΑΒΓ τρίγωνον ἐπὶ ὅλον τὸ ΔΕΖ τρίγωνον ἐφαρμόσει καὶ ἴσον αὐτῶι ἔσται, καὶ αἱ λοιπαὶ γωνίαι ἐπὶ τὰς λοιπὰς γωνίας ἐφαρμόσουσι καὶ ἴσαι αὐταῖς ἔσονται, ἡ μὲν ὑπὸ ΑΒΓ τῆι ὑπὸ ΔΕΖ ἡ δὲ ὑπὸ ΑΓΒ τῆι ὑπὸ ΔΖΕ. 
Ἐὰν ἄρα δύο τρίγωνα τὰς δύο πλευρὰς [ταῖς] δύο πλευραῖς ἴσας ἔχηι ἑκατέραν ἑκατέραι καὶ τὴν γωνίαν τῆι γωνίαι ἴσην ἔχηι τὴν ὑπὸ τῶν ἴσων εὐθειῶν περιεχομένην, καὶ τὴν βάσιν τῆι βάσει ἴσην ἕξει, καὶ τὸ τρίγωνον τῶι τριγώνωι ἴσον ἔσται, καὶ αἱ λοιπαὶ γωνίαι ταῖς λοιπαῖς γωνίαις ἴσαι ἔσονται ἑκατέρα ἑκατέραι, ὑφ' ἃς αἱ ἴσαι πλευραὶ ὑποτείνουσιν· ὅπερ ἔδει δεῖξαι.
Πηγή: BIBLIOTHECA AUGUSTANA

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου