Translate Whole Page to Read and Solve

Σάββατο 5 Οκτωβρίου 2024

Άλυτες KARKARO εμπνεύσεις !

Έστω χορδή DE κύκλου (O) (κέντρου O ) που τέμνει τη διάμετρό του AB στο σημείο C μεταξύ των O,B και ας είναι F το αντιδιαμετρικό του E και I το έγκεντρο του ορθογωνίου
τριγώνου DCF ας είναι T το σημείο τομής του περίκυκλου του τετραπλεύρου F,I,C,D με τον (O), με D το D παράκεντρο του DCF και PDD(O),PD
Να δειχθεί ότι: 
i) DFFAAPPTTBBD=1 
ii) Τα σημεία A,I,B,D ανήκουν σε κύκλο με ακτίνα R2+OC2, όπου R η ακτίνα του κύκλου (O).
Πηγή: mathematica