Click to Translate Whole Page to Read and Solve

Τρίτη 17 Σεπτεμβρίου 2024

INEQUALITIES: Holder's inequality and Cauchy-Schwarz (Bunyakovsky) inequality

Holder's inequality

If 1p+1q=1,p>1,q>1, then:
|a1b1+a2b2++anbn| 
(|a1|p+|a2|p++|an|p)1p(|b1|q+|b2|q++|bn|q)1q
It is an equation when 
|a1|p1|b1|=|a2|p1|b2|==|an|p1|bn|.

Cauchy-Schwarz (Bunyakovsky) inequality

Cauchy-Schwarz (Bunyakovsky) inequality is obtained by Holder's inequality, when p=q=2:
a1b1+a2b2++anbn 
(a12+a22++an2)(b12+b22++bn2)
It is an equality when 
a1b1=a2b2==anbn.