Eisatopon Math AI Challenges
Your Daily Experience of Math Adventures
Click to Translate Whole Page to Read and Solve
English
French
German
Italian
Spanish
Japanese
中文 (Chinese)
한국어 (Korean)
Τρίτη 17 Σεπτεμβρίου 2024
INEQUALITIES: Holder's inequality and Cauchy-Schwarz (Bunyakovsky) inequality
Holder's inequality
If
1
p
+
1
q
=
1
,
p
>
1
,
q
>
1
, then:
|
a
1
b
1
+
a
2
b
2
+
⋯
+
a
n
b
n
|
≤
≤
(
|
a
1
|
p
+
|
a
2
|
p
+
⋯
+
|
a
n
|
p
)
1
p
(
|
b
1
|
q
+
|
b
2
|
q
+
⋯
+
|
b
n
|
q
)
1
q
It is an equation when
|
a
1
|
p
−
1
|
b
1
|
=
|
a
2
|
p
−
1
|
b
2
|
=
⋯
=
|
a
n
|
p
−
1
|
b
n
|
.
Cauchy-Schwarz (Bunyakovsky) inequality
Cauchy-Schwarz (Bunyakovsky)
inequality is obtained by
Holder's inequality
,
when
p
=
q
=
2
:
a
1
b
1
+
a
2
b
2
+
⋯
+
a
n
b
n
≤
≤
(
a
1
2
+
a
2
2
+
⋯
+
a
n
2
)
(
b
1
2
+
b
2
2
+
⋯
+
b
n
2
)
It is an equality when
a
1
b
1
=
a
2
b
2
=
⋯
=
a
n
b
n
.
Νεότερη ανάρτηση
Παλαιότερη Ανάρτηση
Αρχική σελίδα
Εγγραφή σε:
Σχόλια ανάρτησης (Atom)