Translate Whole Page

Δευτέρα 19 Αυγούστου 2024

The Basel Problem

Theorem 
$\zeta (2) = \sum_{n \mathop = 1}^\infty {\dfrac 1 {n^2} } = \dfrac {\pi^2} 6$
where $\zeta$ denotes the Riemann zeta function.
Proof
By Fourier Series of $x^2$, for $x \in ({-\pi}.. \pi)$: 
$ x^2 = \dfrac {\pi^2} 3 + \sum_{n \mathop = 1}^\infty [{({-1})^n \dfrac 4 {n^2} \cos n x}]$
Letting $x \to \pi$ from the left:
\(\pi^2\) \(=\) \(\dfrac {\pi^2} 3 + \sum_{n \mathop = 1}^\infty [{({-1})^n \dfrac 4 {n^2} \cos \pi x}\)]
\(\pi^2\) \(=\) \(\dfrac {\pi^2} 3 + \sum_{n \mathop = 1}^\infty [{({-1})^n ({-1})^n \dfrac 4 {n^2} }\)] Cosine of Multiple of $\pi$
\(\pi^2\) \(=\) \(\dfrac {\pi^2} 3 + 4 \sum_{n \mathop = 1}^\infty \dfrac 1 {n^2}\)
\(\leadsto \ \ \) \(\dfrac {2 \pi^2} 3\) \(=\) \(4 \sum_{n \mathop = 1}^\infty \dfrac 1 {n^2}\)
\(\leadsto \ \ \) \(\sum_{n \mathop = 1}^\infty \dfrac 1 {n^2}\) \(=\) \(\dfrac {\pi^2} 6\)
$\blacksquare$.
From WikiProof

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου