Απόδειξη
Έχουμε διαδοχικά
$ln(-1) = π \cdot i$
$e^{ln(−1)}=e^{πi}$
$−1=e^{πi}$
$e^{πi}+1=0$
που είναι η ταυτότητα Euler.
Algebra, Geometry, International Mathematical Olympiads, Math contests, Puzzles, Brainteasers, Number Theory, Combinatorics, Logic, Paradox
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου