$ a \le b \le c$ και $a+b+c=1$.
Να αποδειχθεί ότι
\[\frac{a+c}{\sqrt{a^2+c^2}}+\frac{b+c}{\sqrt{b^2+c^2}}+\]
\[+\frac{a+b}{\sqrt{a^2+b^2}} \le \frac{3\sqrt{6}(b+c)^2}{\sqrt{(a^2+b^2)(b^2+c^2)(c^2+a^2)}}.\]
ELMO Shortlist 2012
Algebra, Geometry, International Mathematical Olympiads, Math contests, Puzzles, Brainteasers, Number Theory, Combinatorics, Logic, Paradox
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου