Challenging Recreational Mathematics
Your Daily Experience of Math Adventures
Κυριακή 12 Μαΐου 2024
Ανισότητες - 359η
Έστω $a,b,c$ θετικοί πραγματικοί αριθμοί τέτοιοι, ώστε
$ a \le b \le c$ και $a+b+c=1$.
Να αποδειχθεί ότι
\[\frac{a+c}{\sqrt{a^2+c^2}}+\frac{b+c}{\sqrt{b^2+c^2}}+\]
\[+\frac{a+b}{\sqrt{a^2+b^2}} \le \frac{3\sqrt{6}(b+c)^2}{\sqrt{(a^2+b^2)(b^2+c^2)(c^2+a^2)}}.\]
ELMO Shortlist 2012
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου
Νεότερη ανάρτηση
Παλαιότερη Ανάρτηση
Αρχική σελίδα
Εγγραφή σε:
Σχόλια ανάρτησης (Atom)
Total views
Αναζήτηση
Search
190 Αποδείξεις του Πυθαγορείου θεωρήματος
Recent Comments
Επισκεφτείτε το Eisatopon στο Twitter X
Επισκεφτείτε το Eisatopon στο Pinterest
Desmos Activities
COPILOT AI
Ultimate AI Math Solver
Photomath
The Ultimate Math Help App
Wikipedia - Mathematics
Google Gemini
OpenAI - Chat GPT
DeepL Translator
LATEX
Ελληνική Μαθηματική Εταιρεία
Κυπριακή Μαθηματική Εταιρεία
Canadian Mathematical Society (CMS)
The William Lowell Putnam Mathematics Competition (Archive 1985 - 2021)
Art of Problem Solving ONLINE
Leonardo Fibonacci
Kurt Friedrich Gödel
Ευκλείδης
Αρχιμήδης
Leonard Euler
Georg Cantor
Pierre-Simon Laplace
René Descartes
Joseph-Louis Lagrange
Πιερ ντε Φερμά
Gottfried Wilhelm Leibniz
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου