The number of primes not exceeding a given real number $x$ is given by
$π(x) = R(x) + \sum R(x^ρ)$
where the sum is over all zeros $ρ$ of $ζ$, the Riemann zeta function, and $R(x)$ is the entire function of $log x$ defined by
$R(x)=1+ \sum_{n-1}^ \infty \dfrac{(logx)^n}{nn!ζ(n+1)}$.
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου