We like to prove :
because, so long as the integrand’s $t$ lies strictly increasing or decreasing between $x$ and $G$, the sign $G – x$ and of $1/t – 1/G$, must be the same.
Equality sign holds iff $x = G$.
Now, replace $x$ by $x_i$ and sum up over $i = 1, 2, … , n$.
$A \geq G$.
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου