Click to Translate Whole Page to Read and Solve

Δευτέρα 18 Δεκεμβρίου 2023

Example of using Partial Fraction to evaluate Integral

Example of using Partial Fraction 

to evaluate Integral

 

Problem

 

We like to evaluate the integral:

                  

  where n = 1, 2, 3, 4.

 

We employ the technique of Partial Fractions. This algebraic 

method is assumed to be known.

 

 

When n = 1,

 

          

 

When n = 2,

 

       By using the substitution  x = tan q, it is a simple 

      exercise to get:

               

Then,

               

In getting (3) here, we change the variable 

and apply (2).

Alternatively, you can start by using the substitution  

x = a tan q  at the beginning of (3).

 

 

When n = 3,

 

               

               

               

               

 

 

 

 


 

 


 


 

 


 

Finally you may check by changing the valuable suitably:

 

 

When n = 4,

 

Since  x4 + 1 cannot be factorized under rational numbers, 

we start with the factorization :

       x4 + 1 = (x4 + 2x2 + 1) – 2x2 = 

(x2 + 1)2 – (Ö2 x)2 = (x2 + Ö2 x + 1)(x2 -Ö2 x +1)

 

As a Partial Fraction exercise, we get:

 

       

               

               

               

       

Finally, if you still feel energetic of checking, we arrive: