Δευτέρα 18 Δεκεμβρίου 2023

Example of using Partial Fraction to evaluate Integral

Example of using Partial Fraction 

to evaluate Integral

 

Problem

 

We like to evaluate the integral:

                  

  where n = 1, 2, 3, 4.

 

We employ the technique of Partial Fractions. This algebraic 

method is assumed to be known.

 

 

When n = 1,

 

          

 

When n = 2,

 

       By using the substitution  x = tan q, it is a simple 

      exercise to get:

               

Then,

               

In getting (3) here, we change the variable 

and apply (2).

Alternatively, you can start by using the substitution  

x = a tan q  at the beginning of (3).

 

 

When n = 3,

 

               

               

               

               

 

 

 

 


 

 


 


 

 


 

Finally you may check by changing the valuable suitably:

 

 

When n = 4,

 

Since  x4 + 1 cannot be factorized under rational numbers, 

we start with the factorization :

       x4 + 1 = (x4 + 2x2 + 1) – 2x2 = 

(x2 + 1)2 – (Ö2 x)2 = (x2 + Ö2 x + 1)(x2 -Ö2 x +1)

 

As a Partial Fraction exercise, we get:

 

       

               

               

               

       

Finally, if you still feel energetic of checking, we arrive:

 

 


Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου