Το $1895$, ο Nicholas Bogdanov-Belsky δημιούργησε τον εμβληματικό πίνακα "Mental Arithmetic in the Public School of S. Rachinsky".
Οι μαθητές απεικονίζονται να προσπαθούν να λύσουν το πρόβλημα στον μαυροπίνακα:
$\dfrac{10^2+11^2+12^2+13^2+14^2}{365}$.
Η ανωτέρω παράσταση ισούτε με 2.
ΑπάντησηΔιαγραφήΕπειδή:
10^2+11^2+13^2+14^=
=(12-2)^2+(12-1)^2+12^2+(12+1)^2+(12+2)^2=
=5*12^2+2*(1^+2^)=5*12^21*12+10=60-12+10=
=(72+1)*10=73*10=730=2*65
Επαλήθευση:
ΑπάντησηΔιαγραφή(10^2+11^2+12^2+13^2+14^2)/365=
=(100+121+144+169+196)/365=
=730/365=2 ο.ε.δ.