Click to Translate Whole Page to Read and Solve

Τρίτη 21 Νοεμβρίου 2023

Επώνυμες Ανισότητες

 Nesbitt's Inequality:
ab+c+bc+a+ca+b32
 Hölder's Inequality:
(i=1naibizi)(i=1nxiyiwi)(i=1nminiki) 
(i=1naiximin)(i=1nbiyinin)(i=1nziwikin)n
 Popoviciu's Inequality:
f(x)+f(y)+f(z)+3f(x+y+z3) 
2[f(x+y2)+f(y+z2)+f(z+x2)]
 Muirhead's Inequality:
(symx1a1x2a2xnan)(symx1b1x2b2xnbn)
 Vasc's Inequality:
(a2+b2+c2)23(a3b+b3c+c3a)
 Hardy-Littlewood-Pólya Inequality:
12i=1nj=1naiajbibji=1n(ai+bi2)
 Vasile Cirtoaje's Inequality:
i=1nai2+bi22i=1n(ai2+bi2)+i=1naibi
 Mildorf's Inequality:
a3(b+c)3+b3(c+a)3+c3(a+b)338
 Inequality with Exponentials:
aabbcc(abc)a+b+c3
 APMO 1997 Inequality:
a3+b3+c3+2abcab2a2+2b2+
+bc2b2+2c2+ca2c2+2a2
 Hardy's Inequality:
(a1+a2++ann)1a1a2ana1a1+a2a2++anan
 Pólya-Szegö Inequality:
12i=1nj=1naiajbibji=1n(ai+bi2)
 Vasile Cirtoaje's Inequality (Generalized):
i=1nai2+bi22i=1n(ai2+bi2)+i=1naibi
 Karamata's Inequality:
i=1naibn+1ii=1naibi
 Popoviciu's Inequality (Generalized):
f(a)+f(b)+f(c)+3f(a+b+c3) 
2[f(a+b2)+f(b+c2)+f(c+a2)]
 Rearrangement Inequality:
a1+a2++anna1a2ann
 Inequality Bernoulli 
(1+x)n1+nx, x>1
(1+x)n1+nx, o<x<1