Click to Translate Whole Page to Read and Solve

Δευτέρα 26 Ιουνίου 2017

Problem of the Week: 2012 AMC 12A, Problem 21

Let $a$$b$, and $c$ be positive integers with $a\ge$ $b\ge$ $c$ such that
$a^2-b^2-c^2+ab=2011$ 
and
$a^2+3b^2+3c^2-3ab-2ac-2bc=-1997$
What is $a$?