Translate Whole Page

Δευτέρα 10 Απριλίου 2017

Problem of the Week: 2010 AIME II, Problem 7

Let $P(z)=z^3+az^2+bz+c$, where a, b, and c are real. There exists a complex number $w$ such that the three roots of
$P(z)$ are $w+3i$$w+9i$, and $2w-4$, where $i^2=-1$Find $|a+b+c|$.

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου