Algebra, Geometry, International Mathematical Olympiads, Math contests, Puzzles, Brainteasers, Number Theory, Combinatorics, Logic, Paradox
Επειδή $x = \sqrt 7 + \sqrt 3 \,\,\,\kappa \alpha \iota \,\,y = \sqrt 7 - \sqrt 3 \,$ θα είναι : $x + y = 2\sqrt 7 \,\,\,\kappa \alpha \iota \,\,\,xy = 4\,\,\,(1)$, οπότε: ${x^2} + {y^2} = {(x + y)^2} - 2xy \Rightarrow {x^2} + {y^2} = 20\,\,\,(2)$.Τώρα θέτουμε $A = {x^6} + {y^6}$και είναι. $A = {({x^2})^3} + {({y^2})^3} = {({x^2} + {y^2})^3} - 3{x^2}{y^2}({x^2} + {y^2})$ , Συνεπώς $A = {20^3} - 3 \cdot {4^2} \cdot 20 = 20(400 - 48) = 20 \cdot 352 \Rightarrow \boxed{A = 7040}$.Νίκος Φραγκάκης
Επειδή $x = \sqrt 7 + \sqrt 3 \,\,\,\kappa \alpha \iota \,\,y = \sqrt 7 - \sqrt 3 \,$ θα είναι : $x + y = 2\sqrt 7 \,\,\,\kappa \alpha \iota \,\,\,xy = 4\,\,\,(1)$, οπότε: ${x^2} + {y^2} = {(x + y)^2} - 2xy \Rightarrow {x^2} + {y^2} = 20\,\,\,(2)$.Τώρα θέτουμε $A = {x^6} + {y^6}$και είναι. $A = {({x^2})^3} + {({y^2})^3} = {({x^2} + {y^2})^3} - 3{x^2}{y^2}({x^2} + {y^2})$ , Συνεπώς $A = {20^3} - 3 \cdot {4^2} \cdot 20 = 20(400 - 48) = 20 \cdot 352 \Rightarrow \boxed{A = 7040}$.
ΑπάντησηΔιαγραφήΝίκος Φραγκάκης