Δευτέρα 8 Απριλίου 2013

▪ Dynamic Construction - Cuboctahedron

Dynamic Construction
The key-step of construction
Illustration
  • Start with a regular octahedron.
  • Take the midpoints H, I, and G of segments AB, AC, and CD, respectively.
  • Create two equ-triangles around line L through points H and G.
  • Create a regular hexagon around line L through point I.
  
  • Create a convex polyhedron OEHIF.
  • Take point J by central symmetry through point H of point F.
  • Create an arc FJK.
  • Create line M that is perpendicular to segments AB and OH.
  • Take a movable point P on arc FJK.
  • Rotate the convex polyhedron OEHIF around line M mapping point F towards point P, then we get convex polyhedron R.
  • Rotate R around line L mapping point H towards point Y to get convex polyhedron S.
  • Rotate R around line L mapping point H towards point E to get convex polyhedron T.
 
  • Create three polyhedrons U, V, and W by central symmetry through point H of polyhedrons R, S, and  T, respectively.
  • Please move point P from point F to point K; then we getCuboctahedron.
  
Πηγή: apollonius

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου