Translate Whole Page to Read and Solve

Τετάρτη 24 Απριλίου 2013

▪ Γεωμετρία - Ασκήσεις 544 - 545

1. Έστω τετράγωνο ABCD εγγεγραμμένο σε κύκλο. Αν M σημείο επί του μικρότερου τόξου AB, να αποδειχθεί ότι  
MCMD>33MAMB.
2. Έστω τρίγωνο ABC,  Ι το έγκεντρο του και D,E,F τα σημεία επαφής του κύκλου με τις πλευρές BC,CA,AB, αντίστοιχα. Αν η διχοτόμος της γωνίας BIC τέμνει την BC στο σημείο M και η ευθεία AM τέμνει την EF στο σημείο P, να αποδειχθεί ότι η DP διχοτομεί τη γωνία FDE
Mediterranean Mathematics Olympiad 1998
 Διασκεδαστικά Μαθηματικά    www.eisatopon.blogspot.com