Του Δημήτρη Μουρούλη
Μπορεί η λογική σκέψη να διεισδύσει στην τελική αλήθεια; Το παρακάτω κείμενο διερευνά αυτό ακριβώς. Το θεώρημα της μη πληρότητας έχει πολλούς αποδέκτες. Από μαθηματικούς και επιστήμονες μέχρι φιλοσόφους και θεολόγους...Για να εκτιμηθεί ο αντίκτυπος του θεωρήματος της μη πληρότητας του Godel, είναι κρίσιμο να καταλάβουμε πώς τα μαθηματικά ήταν αντιληπτά την περίοδο που αποδείχθηκε. Μετά από πολλούς αιώνες συνύπαρξης υπό ίσους όρους ασαφών διαισθητικών αντιλήψεων και ακριβούς λογικής, τα μαθηματικά στο τέλος του 19ου αιώνα άρχισαν να αποσαφηνίζονται.
Επινοήθηκαν τα αποκαλούμενα τυπικά συστήματα. Στα τυπικά συστήματα τα θεωρήματα, με χρήση αυστηρών κανόνων, βλαστάνουν από τα αξιώματα όπως τα κλαδιά από ένα δέντρο. Αυτή η διαδικασία έπρεπε να αρχίσει από κάπου. Και τα αξιώματα ήταν αυτοί οι αρχέγονοι σπόροι από τους οποίους όλα τα άλλα αναπήδησαν. Η δύναμη αυτού του μηχανιστικού οράματος των μαθηματικών ήταν ότι εξάλειπτε την ανάγκη για τη σκέψη ή την κρίση. Εφ' όσον τα αξιώματα ήταν σωστά και εφ' όσον οι κανόνες με τους οποίους γινόταν η χρήση τους διατηρούσαν την αλήθεια, τα μαθηματικά δεν θα μπορούσαν να εκτροχιαστούν σε αναλήθειες. Η αλήθεια ήταν εξασφαλισμένη μέσω μιας αυτόματης θεωρητικής μεθοδολογίας. Ένας από τους μεγάλους μαθηματικούς στόχους ήταν να μειωθεί η όλη θεωρία αριθμών σε ένα τελικό τυπικό σύστημα.
Όπως στη γεωμετρία του Ευκλείδη, ένα τέτοιο σύστημα θα άρχιζε με μερικά απλά αξιώματα που είναι σχεδόν αναμφισβήτητα, και θα παρείχε τα θεωρήματα με έναν μηχανικό τρόπο. Η ιδέα ήταν ότι αυτό το σύστημα θα εμπεριείχε κάθε δήλωση που θα μπορούσαμε να κάνουμε για τους φυσικούς αριθμούς. Έτσι εάν κάναμε τη δήλωση «κάθε ζυγός αριθμός μεγαλύτερος από 2 είναι το άθροισμα δύο πρώτων» θα ήμασταν σε θέση να αποδείξουμε αυστηρά, από τα αξιώματα, είτε ότι είναι αληθής είτε ότι είναι ψευδής. Οι λέξεις «αληθές» και «ψευδές» θα γίνονταν συνώνυμα των «αποδείξιμο» και «διαψεύσιμο» αντίστοιχα, μέσα στο σύστημα αυτό. Το Principia Mathematica των Russell και Whitehead ήταν η διασημότερη προσπάθεια να βρεθεί ένα τέτοιο σύστημα.
Όπως στη γεωμετρία του Ευκλείδη, ένα τέτοιο σύστημα θα άρχιζε με μερικά απλά αξιώματα που είναι σχεδόν αναμφισβήτητα, και θα παρείχε τα θεωρήματα με έναν μηχανικό τρόπο. Η ιδέα ήταν ότι αυτό το σύστημα θα εμπεριείχε κάθε δήλωση που θα μπορούσαμε να κάνουμε για τους φυσικούς αριθμούς. Έτσι εάν κάναμε τη δήλωση «κάθε ζυγός αριθμός μεγαλύτερος από 2 είναι το άθροισμα δύο πρώτων» θα ήμασταν σε θέση να αποδείξουμε αυστηρά, από τα αξιώματα, είτε ότι είναι αληθής είτε ότι είναι ψευδής. Οι λέξεις «αληθές» και «ψευδές» θα γίνονταν συνώνυμα των «αποδείξιμο» και «διαψεύσιμο» αντίστοιχα, μέσα στο σύστημα αυτό. Το Principia Mathematica των Russell και Whitehead ήταν η διασημότερη προσπάθεια να βρεθεί ένα τέτοιο σύστημα.
Κάντε κλικ εδώ, για να διαβάσετε ολόκληρο το άρθρο.
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου