Challenging Recreational Mathematics
Your Daily Experience of Math Adventures
Τρίτη 21 Αυγούστου 2012
▪ Ανισότητες - 125η
Αν $a,b,c$ θετικοί πραγματικοί αριθμοί, να αποδειχθεί ότι:
$\frac{a+b}{b+c}+\frac{b+c}{c+a}+\frac{c+a}{a+b}\geq \frac{a(b+c)}{a^{2}+bc}+\frac{b(c+a)}{b^{2}+ca}+\frac{c(a+b)}{c^{2}+ab}$
.
L. D. Thanh
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου
Νεότερη ανάρτηση
Παλαιότερη Ανάρτηση
Αρχική σελίδα
Εγγραφή σε:
Σχόλια ανάρτησης (Atom)
Total views
Αναζήτηση
Search
190 Αποδείξεις του Πυθαγορείου θεωρήματος
Recent Comments
Επισκεφτείτε το Eisatopon στο Twitter X
Επισκεφτείτε το Eisatopon στο Pinterest
Desmos Activities
COPILOT AI
Ultimate AI Math Solver
Photomath
The Ultimate Math Help App
Wikipedia - Mathematics
Google Gemini
OpenAI - Chat GPT
DeepL Translator
LATEX
Ελληνική Μαθηματική Εταιρεία
Κυπριακή Μαθηματική Εταιρεία
Canadian Mathematical Society (CMS)
The William Lowell Putnam Mathematics Competition (Archive 1985 - 2021)
Art of Problem Solving ONLINE
Leonardo Fibonacci
Kurt Friedrich Gödel
Ευκλείδης
Αρχιμήδης
Leonard Euler
Georg Cantor
Pierre-Simon Laplace
René Descartes
Joseph-Louis Lagrange
Πιερ ντε Φερμά
Gottfried Wilhelm Leibniz
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου