Τετάρτη 25 Απριλίου 2012

▪ USA USAMO (junior) 2012

Ημέρα
1. Given a triangle , let and be points on segments and , respectively, such that . Let and be distinct points on segment such that lies between and , , and . Prove that are concyclic (in other words, these four points lie on a circle).
Η λύση της άσκησης από τον Νίκο Φραγκάκη (Doloros).
2. Find all integers such that among any positive real numbers with
 
there exist three that are the side lengths of an acute triangle. 

3. Let be positive real numbers. Prove that
  .
Ημέρα
..............

2 σχόλια: