Τρίτη 17 Απριλίου 2012

▪ FYROM Math Olympiad 2012

1. Solve the equation in the set of integer numbers. 
2. If and are positive real numbers such that then prove that the following inequality holds 
When does inequality hold? 
3. Find all functions which satisfy the conditions: 
 and 
4. A fixed circle and collinear points and are given such that the points and lie outside the circle and lies inside the circle . Prove that, if is an arbitrary quadrilateral inscribed in the circle such that the points and lie on lines and respectively, then the side passes through a fixed point collinear with and , independent of the quadrilateral .
Κάντε κλικ εδώ, για να τα κατεβάσετε.

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου