Σάββατο 4 Φεβρουαρίου 2012

▪ Functions and Graphs

 Ερωτήσεις Σωστό - Λάθος
1. The graph of any equation in two variables is a straight line.
  True    False  
2. The graph of any linear equation in two variables is a straight line.
 True    False  
3. Every line has a slope. 
 True    False  
4. Every non vertical line has a slope.
  True    False  
5. Every line is the graph of a linear equation in two unknowns. 
 True    False  
6. To find the equation of a line, all you need is a point and the slope.
  True    False  
7. You need to know the y-intercept to write the equation of a line.
  True    False  
8. The graph of a quadratic function f(x) = ax2+bx+c (a  0) is always a parabola.
  True    False  
9. The vertex is the lowest point on a parabola. 
 True    False  
10. Every parabola crosses both axes.
  True    False  
11. In a linear cost equation, the slope gives the cost of the first item.
  True    False  
12. If displacement is a linear function of time, then the slope of the graph represents the velocity.
  True    False  
13. If the weekly sales q of an item priced at $p are given by q = 3p + 40, then the weekly sales decrease by 3 items for every $1 increase in price. 
 True    False  
14. If the total weekly revenue for items priced at $p is given by the function R(p) = p2 + 100p, then the total weekly revenue will be $100 if we give the items away. 
 True    False  
15. A real-valued function of a real variable is a rule that assigns exactly one number to each specified input number in a specified domain. 
 True    False  
16. Some functions assign two or more numbers to each specified input number.
  True    False  
17. If f(x) = x3 + 3x, then f(x+h) = x3 + 3x + h. 
 True    False  
18. If f(x) = 1 / (2x), then f(x+h) = 1 / (2x) + h.
  True    False  
19. If f(x) = x / (x  1), then the largest possible domain of f consists of all real numbers except 0.
  True    False  
20. Every equation in x has at least one solution that can be found with a graphing calculator.
  True    False  
Πηγή: people.hofstra.edu

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου