Translate Whole Page

Δευτέρα 13 Ιουνίου 2011

▪ Moscow Math Olympiad 2011

Grade 8
Problem 1. There were 6 seemingly identical balls lying at the vertices of the hexagon ABCDEF: at A — with a mass of 1 gram, at B — with a mass of 2 grams, …, at F — with a mass of 6 grams. A hacker switched two balls that were at opposite vertices of the hexagon. There is a balance scale that allows you to say in which pan the weight of the balls is greater. How can you decide which pair of balls was switched, using the scale just once?
Problem 2. Peter was born in the 19th century, while his brother Paul was born in the 20th. Once the brothers met at a party celebrating both birthdays. Peter said, “My age is equal to the sum of the digits of my birth year.” “Mine too,” replied Paul. By how many years is Paul younger than Peter?
Problem 3. Does there exist a hexagon which can be divided into four congruent triangles by a single line?
Problem 4. Every straight segment of a non-self-intersecting path contains an odd number of sides of cells of a 100 by 100 square grid. Any two consecutive segments are perpendicular to each other. Can the path pass through all the grid vertices inside and on the border of the square?
Problem 5. Denote the midpoints of the non-parallel sides AB and CD of the trapezoid ABCD by M and N respectively. The perpendicular from the point M to the diagonal AC and the perpendicular from the point N to the diagonal BD intersect at the point P. Prove that PA = PD.
Problem 6. Each cell in a square table contains a number. The sum of the two greatest numbers in each row is a, and the sum of the two greatest numbers in each column is b. Prove that a = b.

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου