Σάββατο 19 Δεκεμβρίου 2015

Αναλογικό ρολόι

Το αναλογικό ρολόι του Νίκου δείχνει ότι η ώρα είναι 12:13. Ο αριθμός των δευτερολέπτων δεν φαίνεται. 
Μετά από 10 δευτερόλεπτα, το ρολόι εξακολουθεί να δείχνει ότι η ώρα είναι 12:13. 
Ποιος είναι ο μέσος αριθμός δευτερολέπτων που θα περάσουν μέχρι το ρολόι να δείξει 12:14;
Harvard–MIT Mathematics Tournament (HMMT) 2015
 Διασκεδαστικά Μαθηματικά    www.eisatopon.blogspot.com     

16 σχόλια:

  1. Ο "μέσος αριθμός δευτερολέπτων που θα περάσουν..." δεν μπορεί να είναι δεκαδικός αριθμός.
    Ο χρόνος είναι ομοιόμορφα κατανεμημένος (αν και "κβαντισμένος" ανά δευτερόλεπτο ,σε ένα αναλογικό ρολόι) στα διαστήματα 12:13:00 - 12:13:50 και 12:13:10 -12:14:00 . Διάστημα 50 δευτερολέπτων. Άρα το ζητούμενο είναι 25 δευτερόλεπτα.

    ΑπάντησηΔιαγραφή
  2. Εφ'όσον σύμφωνα με την εκφώνηση, ύστερα από 10 δευτερόλεπτα, το ρολόι εξακολουθεί να δείχνει 12:13 και όχι 12:14, ο χρόνος είναι ομοιόμορφα κατανεμημένος στα διαστήματα 12:13:00-12:13:49 και 12:13:10-12:13:59. Επομένως απομένουν από 1 έως 50 δευτερόλεπτα, μέχρι το ρολόι να δείξει 12:14, άρα μέσος όρος 25,5.
    Το ότι κάποια μεγέθη, όπως ο χρόνος είναι κβαντισμένα, δεν σημαίνει ότι δεν μπορουμε να χρησιμοποιούμε δεκαδικές τιμές στους μεσους όρους. Και οι ενδείξεις ενός ζαριού είναι κβαντισμένες (με την εννοια ότι είναι ακεραιοι αριθμοί), αλλά σε πλήθος προβλημάτων, προκύπτουν δεκαδικές απαντήσεις. π.χ. ποιος είναι ο μέσος όρος των ενδείξεων ενός ζαριού, σε ένα πλήθος ρίψεων; (Απάντηση 3,5 έστω και αν δεν υφίσταται τέτοια ενδειξη)

    ΑπάντησηΔιαγραφή
  3. Θα συμφωνήσω με το Γ.Ριζόπουλο στο αποτέλεσμα για τον εξής λόγο:
    Ξέροντας ότι η ένδειξη του ρολογιού στο χρόνο t=0 είναι 12:13 και ότι στο χρόνο t=10 sec παραμένει 10:13, ξέρουμε ότι η ακριβής ώρα στο χρόνο t=0 είναι τουλάχιστον 12:13:00 και το πολύ 12:13:50.
    Επομένως, θεωρώντας ότι ο χρόνος είναι συνεχής, στο χρόνο t=10 sec η ακριβής ώρα είναι τουλάχιστον 12:13:10 και το πολύ 14:00:00 -dt. Συνεπώς από το χρόνο t=10 sec μέχρι να δείξει ο λεπτοδείκτης 14, θα περάσουν το πολύ 50 και τουλάχιστον dt->0 sec, ήτοι κ.μ.ό. (0+50)/2=25 sec.
    Αν όμως ο χρόνος στον οποίο κοιτάξαμε το ρολόι δεύτερη φορά ήταν π.χ. t=11 sec, τότε κατ' αναλογία ο μέσος αριθμός sec μέχρι να δείξει το ρολόι 12:14 θα ήταν (0+49)/2=24,5, δηλαδή δεν αποκλείεται εκ προοιμίου μη ακέραιος μέσος αριθμός δευτερολέπτων.

    ΑπάντησηΔιαγραφή
    Απαντήσεις
    1. Διόρθωση πληκτρολογικού λάθους (με την ευκαιρία, γεια σου Ευθύμη!): το πολύ 12:14:00 -dt (αντί 14:00:00 -dt)

      Διαγραφή
  4. Ο χρόνος είναι ομοιόμορφα κατανεμημένος αρχικά στο διάστημα $12:13:00-12:13:49,999999....$ (δηλαδή μέχρι $12:13$ και $50 sec$ παρά παρά ένα απειροελάχιστο του $sec$) και μετά από και μετά από $10 sec$ στο διάστημα $12:13:10-12:13:59,99999999999...$.
    Επομένως απομένουν $0,000....01=0 $ έως $49,999999...=50 sec$, οπότε ο μέσος χρόνος είναι $\dfrac{50}{2}=25$ (όπως έχει γράψει δύο φορές ο Γιώργος Ριζόπουλος (όχι όμως επειδή δεν μπορεί να είναι δεκαδικός αριθμός, όπως σωστά παρατηρεί ο Στράτος. Αν ήταν $49 sec$ το διάστημα θα έχουμε μέσο χρόνο $24,5sec)

    ΑπάντησηΔιαγραφή
    Απαντήσεις
    1. Απόλυτη σύμπτωση με τον Θανάση (papadim), γεια σου Θανάση.
      Δεν είχα δει το σχόλιο του καθώς έγραφα το δικό μου...

      Διαγραφή
    2. Είναι απίστευτο, ούτε εγώ είχα δει το σχόλιό σου Ευθύμη όταν έγραφα το διορθωτικό δικό μου! Παίξε Τζόκερ, αγόρασε λαχεία, θα το κάνω κι εγώ!
      Και μην παραλείψεις από τους αριθμούς που θα διαλέξεις το 25 :-)

      Διαγραφή
    3. Εχετε δίκιο! Η σωστή απάντηση είναι όντως 25 δευτερόλεπτα.

      Διαγραφή
  5. Θανάση και Στράτο, ξέρω (θυμάμαι ακόμα δηλαδή... :-) ) ότι η "μέση τιμή" μπορεί να είναι δεκαδικός σε ακέραια ενδεχόμενα -όπως τα ζάρια που λέει ο Στράτος, αλλά η εκφώνηση λέει "μέσος ΑΡΙΘΜΟΣ ΔΕΥΤΕΡΟΛΕΠΤΩΝ..." όχι ας πούμε "μέσος χρόνος" ή "μέση τιμή του χρόνου".
    Ακόμα δηλαδή και στην περίπτωση που βάζει ο θανάσης: "Αν όμως ο χρόνος στον οποίο κοιτάξαμε το ρολόι δεύτερη φορά ήταν π.χ. t=11 sec, τότε κατ' αναλογία ο μέσος αριθμός sec μέχρι να δείξει το ρολόι 12:14 θα ήταν (0+49)/2=24,5 " η μέση τιμή είναι μεν 24,5 αλλά θεωρώ ότι η πρέπουσα απάντηση θα ήταν και πάλι το 25. Καθώς σε ένα αναλογικό ρολόι δεν μπορώ να "μετρήσω" μισό δευτερόλεπτο.
    Καλές γιορτές σε όλους!

    ΑπάντησηΔιαγραφή
  6. Aν δεν είχε σημασία άλλωστε αυτό που ισχυρίζομαι, τότε η εκφώνηση δεν είχε λόγο να μιλάει για "Αναλογικό" ρολόι. Θα μπορούσε να λέει γενικά "ρολόι". Οι Αμερικάνοι δεν βάζουν χωρίς λόγο περιττά στοιχεία στα προβλήματά τους.

    ΑπάντησηΔιαγραφή
    Απαντήσεις
    1. Γιώργο, είναι γεγονός ότι το σκεπτικό σου με προβλημάτισε αρκετά. Ομως γιατί ο μέσος αριθμός κάποιας ακέραιης ποσότητας, να μην μπορεί να εκφραστεί σε δεκαδική μορφή;
      Ας δούμε το εξής παράδειγμα. Εστω ότι ρίχνουμε δύο ζάρια και μας ζητείται να βρούμε το μέσο αριθμό φορών που πρέπει να τα ρίξουμε μέχρι να εμφανιστεί άθροισμα 6. Ποιά ειναι η σωστή απάντηση; Νομίζω ότι, καθώς η πιθανότητα είναι 5/36, η σωστή απάντηση πρέπει να είναι 7,2 φορές, έστω και αν τα ριξίματα των ζαριών μετρώνται σε ακέραιες ποσότητες

      Διαγραφή
  7. Στράτο, το στοιχείο που με οδήγησε στην "αιρετική" άποψη ,καθώς ασφαλώς μια οποιαδήποτε μαθηματική ελπίδα μπορεί να έχει δεκαδικές τιμές, είναι η λέξη "πέρασαν". Σκεφτόμενος ότι τα δευτερόλεπτα σε ένα αναλογικό ρολόι "περνούν" κβαντισμένα. 1,2,3,...
    Αλλά σε δεύτερη ανάγνωση ,ομολογώ ότι εφόσον δεν υπάρχει δευτερολεπτοδείκτης τα 10 δευτερόλεπτα μπορεί να μετρήθηκαν με οποιονδήποτε χρονομέτρη ,οπότε το σκεπτικό μου όντως μπάζει. Και το "αναλογικό" έχει τη σημασία του στο ότι τα δευτερόλεπτα δεν φαίνονται, όπως σε ένα ψηφιακό.
    Mea culpa λοιπόν (μάλλον...)

    ΑπάντησηΔιαγραφή
  8. Το εξαντλήσαμε, νομίζω.
    Χρόνια πολλά και από εμένα, καλές γιορτές σε όλους τους φίλους! Και οι ξενιτεμένοι γρήγορα κοντά στις οικογένειες και τα αγαπημένα τους πρόσωπα!

    ΑπάντησηΔιαγραφή