Δευτέρα, 30 Ιανουαρίου 2017

Problem of the Week: 2001 AMC 8, Problem 23

Points $R,S$ and $T$ are vertices of an equilateral triangle, and points $X,Y$ and $Z$ are midpoints of its sides.
How many noncongruent triangles can be drawn using any three of these six points as vertices?

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου